df= 4 * Cos(2 * X) - 3 * Sin(X) - 1 End Function Function fText() As String Module2 - 2 ' ierr = 1, warning, akar belum memenuhi ketelitian, ' namun maksimum iterasi sudah tercapai ' ierr = 0, sukses mencari akar Dim NoIter As Integer, Penyebut As Double, X1 As Double ' Sediakan variabel untuk counter
Kelas 11 SMAPersamaan TrigonometriPersamaan TrigonometriNilai x yang memenuhi persamaan 2 akar3 cos^2 x-2sin x cos x-1-akar3=0, untuk 0<= x<=360 adalah ... a. {45,105,225,285} b. {45,135,225,315} c. {15,105,195,285} d. {15,135,195,315} d. {15,225,295,315}Persamaan TrigonometriPersamaan TrigonometriTRIGONOMETRIMatematikaRekomendasi video solusi lainnya0051Besar sudut 3/4 phi rad sama dengan....0904Sebuah talang air akan dibuat dari lembaran seng yang leb...0104Bentuk sin^4x-cos^4x/tan^2x-1 ekuivalen dengan bent...0653Himpunan semua bilangan real x pada selang [pi, 2 pi] y...Teks videokeren kali ini kita akan mencari nilai x yang memenuhi persamaan trigonometri di mana untuk interval x nya kurang dari atau = 360 derajat dan lebih dari atau sama dengan nol derajat nah disini kita perlu diingat rumus-rumus dari trigonometri Di mana Sin 2 Alfa itu = 2 Sin Alfa dikali cos Alfa kemudian Cos 2 Alfa = 2 cos kuadrat Alfa min 1 dan Sin Alfa Min beta itu = Sin Alfa dikali cos beta Min cos Alfa dikali Sin beta Nah di sini 2 akar 3 cos kuadrat X = min √ 3 kita jadikan satu tinggal di sini 2 akar 3 cos kuadrat X kemudian dikurangi dengan √ 3 kemudian min 2 Sin x cos X maka menjadi Sin 2 X dikurang 1 sama dengan nol kemudian akar 3 kita keluarkan kalau akar 3 kita kelasnya menjadi 2 cosKuadrat x min 1 dikurang sin 2x dikurang 1 sama dengan nol. Nah √ 3 itu kan = 60 derajat ya jadi Tan 60 derajat Itu sama dengan akar 3 di mana kita tahu Tan itu Sin per cos maka dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat 3 akar 3 ini dapat kita tulis Sin 60 derajat dibagi dengan cos 60 derajat kemudian 2 cos kuadrat x min 1 menjadi cos 2x cos 2x dikurang sin 2x kemudian min 1 Kita pindah Ros makan sama dengan 1 lalu di sini kita samakan penyebutnya a maka Sin 60 derajat dikali dengan cos 2x kemudian dikurangi dengan cos 60 derajat dikali dengan sin 2x kemudian dibagi dengan cos 60 derajat = 1. Nah ini kita kali silang lalu sin cos cos Itu kan = Sin Alfa Min beta Blade ini Alfa ini ditanya berarti Sin 60 derajat dikurang dengan 2 x maka = cos 60 derajat dikali 1 cos 60 itu adalah setengah nama kan disini kita dapat Sin 60 derajat min 2 x = setengah Kemudian untuk mencari nilai x kita gunakan rumus dari persamaan trigonometri untuk rumus persamaan trigonometri yaitu teen X = Sin Alfa maka dapat kita cari nilai x nya yaitu = Alfa + K dikali 360 derajat atau X = 180° Sin Alfa ditambah k dikali 360 derajat. Di manakah ini merupakan elemen bilangan bulat Nah kita jadikan Sin di mana kita tahu Sin 30° itu adalah setengah maka dapat kita Tuliskan Sin 60 derajat min 2 x ini = Sin 30 derajat sehingga dapat kita Tuliskan untuk yang pertama 60 derajat Min 2x ini = 30 derajat ditambah k dikali 360 derajat kemudian di sini min 2 x = 6 derajat kita pindah ruas berarti 30 derajat dikurang dengan 60 derajat 30 derajat + k dikali 360 derajat kemudian ke 200 kita bagi dengan negatif 2 sehingga x = 15 derajat kemudian ditambah dikurangi akar 6 minus dikurang k dikali dengan 180° Nah di sini karena Kak merupakan elemen bilangan bulat kita coba nilai kakaknya itu = negatif 2 Naji kakaknya negatif 2 maka nilai x nya sama dengan 160 derajat ditambah 15 375 derajat nah ini tidak memenuhi karena 0-360 derajat kemudian kita coba kakaknya = negatif 1 maka untuk nilai x nya ini = 108 derajat ditambah 15 195° ini memenuhi kemudian kita coba tanya sama dengan nol maka untuk nilai x nya = 15 derajat di sini kita cukupkan sampai dengan K = 0 kalau k = 1 nanti negatif 3 x = 195 derajat dan x = 15 derajat untuk yang kedua X = 108 derajat Min Alfa + K dikali 360 derajat tinggi yang kedua ini kita gunakan X = berarti 60° ya 60 derajat min 2 x = 108 derajat Min Berarti 140 kurang 30 adalah 150 derajat. Kemudian ditambahkan dikali 360 derajat 60 Kita pindah ruas maka min 2 x = 90 derajat ditambah k dikali 360 derajat kemudian ke 200 kita berbagi dengan min 2 agar kita dapat nilai x-nya x-nya = 45 derajat Min 45 derajat Min 45 derajat kemudian ditambah dengan dikurang karena negatif Min k dikali 180 derajat. Nah, kemudian kita cari nilainya kita coba kayaknya kita mulai dari negatif dua ya negatif 2 maka untuk nilai x nya = 360 derajat dikurang 45 315 derajat kemudian ketika kakaknya = negatif 1 dari nilai x nya = 135 derajat kemudian ketika kan yang sama dengan nol nilai x nya = Min 45 derajat nya tidak memenuhi 3y yang memenuhi hanya 315 dan 135 Nah tadi kita sudah dapat 195 dan 15 kita bahkan untuk yang kedua ini kita dapat 315 derajat dan 135 derajat sehingga untuk himpunan penyelesaian nya yaitu 15 derajat 135 derajat 195 derajat dan yang terakhir 315 derajat maka jawabannya adalah yang di Oke sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Tentukannilai x yang memenuhi persamaan : akar 3 sin2x + cos2x= akar 3 ; 0 - 34352666 barbaraaaa1234 barbaraaaa1234 10.10.2020 Matematika Iklan Iklan alfianrizky07 alfianrizky07 Penjelasan dengan langkah-langkah: √3 sin 2x + cos 2x = √3. √3 sin 2x -
Teks video Itunya ada pertanyaan terkait persamaan trigonometri untuk menentukan nilai x. Jika diketahui akar 3 cos X + Sin x = 2 cos 25 dengan x adalah 0 sampai 2 phi, maka dapat diselesaikan dengan rumus a cos X + B Sin x = k * x min Alfa dengan K = akar dari a kuadrat + b kuadrat dan apa diperoleh dari Tan Alfa yaitu teral soal kita ketahui bahwa nilai a = √ 3 dan b = 1 maka k = akar dari akar 3 kuadrat ditambah 1 kuadrat atau = 2 Tan Alfa nilainya sama dengan1 per √ 3 atau sama dengan 1 per 3 akar 3 sehingga nilai Alfa diketahui sebesar 30 dan 310 maka persamaan trigonometri dapat ditulis menjadi akar 3 cos X + Sin x = 2 x cos X min 30 atau 3 cos X + Sin x = 2 x cos X min 210 dari Toa kita dapatkan bahwa akar 3 cos X + Sin X nilainya = 2 x 25 maka 2 cos 25 = 2 cos X min 30 atau 2 cos 25 =cos X min 210 keduanya akan habis dibagi 2 maka cos 25 = 4 X min 30 nilai x dapat diperoleh dari rumus 3 cos x = cos Alfa maka X = + min Alfa ditambah 33 X min 30 = 25 + k * 360 atau X = 55 X 360 jika x = 0 maka X = 55 kemudian X min 30 = Min 25 + 360 x = 360 x jika x = 0 maka x = 5untuk yang pertama ankot X min 210 didapatkan bahwa X min 210 = 25 + k 30 = 235 + k 360 maka jika k = 0 maka X = 235 kemudian X min 20 = min 25 + k * 360 x = 185 + 63 k = 0 maka nilai x nya = 185 jawabannya adalah yang B dimana x adalah 55 dan 235 sebagai himpunan penyelesaian untuk nilai x The Giant Sampai ketemu di pertanyaan berikutnya Soal yang Akan Dibahas Nilai $ x $ diantara $ 0^\circ $ dan $ 360^\circ $ yang memenuhi persamaan $ \sqrt{3}\cos x – \sin x = \sqrt{2} $ adalah …. A. $ 15^\circ \, $ dan $ 285^\circ $ B. $ 75^\circ \, $ dan $ 285^\circ $ C. $ 15^\circ \, $ dan $ 315^\circ $ D. $ 75^\circ \, $ dan $ 315^\circ $ E. $ 15^\circ \, $ dan $ 75^\circ $ $\spadesuit $ Konsep Dasar *. Rumus trigonometri $ \, \, \, \, a \sin fx + b \cos fx = k \cos fx – \theta $ dengan $ k = \sqrt{a^2 + b^2} $ dan $ \tan \theta = \frac{a}{b} $ *. Persamaan trigonometri $ \cos fx = \cos \theta \, $ memiliki penyelesaian $ fx = \theta + $ atau $ fx = -\theta + $ dengan $ k $ bilangan bulat. $\clubsuit $ Pembahasan *. Mengubah bentuk trigonometrinya dari bentuk $ \sqrt{3}\cos x – \sin x = – \sin x + \sqrt{3}\cos x $ , $ a = -1 , b = \sqrt{3} $ dan $ fx = x $ $ k = \sqrt{-1^2 + \sqrt{3}^2} = \sqrt{1 + 3} = \sqrt{4} = 2$ $ \tan \theta = \frac{-1}{\sqrt{3}} \rightarrow \tan \theta = – \frac{1}{\sqrt{3}} \rightarrow \theta = 330^\circ $ karena sin negatif dan cos positif sehingga $ \theta $ di kuadrat IV. Sehingga bentuknya menjadi $ \begin{align} \sqrt{3}\cos x – \sin x & = k \cos fx – \theta \\ & = 2 \cos x – 330^\circ \end{align} $ *. Menyelesaikan soalnya $ \begin{align} \sqrt{3}\cos x – \sin x & = \sqrt{2} \\ 2 \cos x – 330^\circ & = \sqrt{2} \\ \cos x – 330^\circ & = \frac{1}{2} \sqrt{2} \\ \cos x – 330^\circ & = \cos 45^\circ \\ fx = x – 330^\circ , \theta & = 45^\circ \end{align} $ memiliki penyelesaian akar-akar i. $ fx = \theta + $ $ \begin{align} x – 330^\circ & = 45^\circ + \\ x & = 375^\circ + \\ k = -1 \rightarrow x & = 15^\circ \end{align} $ yang lainnya diluar $ 0^\circ $ dan $ 360^\circ $. ii. $ fx = -\theta + $ $ \begin{align} x – 330^\circ & = -45^\circ + \\ x & = 285^\circ + \\ k = 0 \rightarrow x & = 285^\circ \end{align} $ yang lainnya diluar $ 0^\circ $ dan $ 360^\circ $. Sehingga solusinya $ x = \{ 15^\circ , 285^\circ \} $ Jadi, penyelesaiannya $ x = \{ 15^\circ , 285^\circ \} . \, \heartsuit $ alpen = 59mentos = 32milk = 75toble = 15twister = 75berapa persen kemungkinan saya akan memilih toble saat mengeluarkan permen dari tas secara acak?​ = …… a. 65 b. 62 c. 64 d. 63​ = …… a. 53 b. 52 c. 51 d. 54​ Tentukan nilai fungsi lerasi Fx=2x+1 9. Perhatikan gambar, Tentukan luas jajar genjang tersebut! 10 cm ang 6 cm 18 cm ♫ 4 cm dan 9. Perhatikan gambar , Tentukan luas jajar genjang tersebu … t ! 10 cm ang 6 cm 18 cm ♫ 4 cm dan​ …… a. 52 b. 53 c. 54 d. 55​ 148 orang karyawan suatu perusahanya yang dipilih secara acak ditanya mengenai besarnya pengeluaran per hari untuk biaya hidup. Ternyata rata-rata pen … geluaran per bulan sebesar Rp. dengan simpangan baku yang diketaui sebesar Rp. α = 1%; α/2 = 0,5%; Zα/2 = 2,58 a. Hitunglah pendugaan interval rata-rata pengeluaran dengan tingkat keyakinan sebesar 95% b. Hitunglah pendugaan interval rata-rata pengeluaran dengan tingkat keyakinan sebesar 90%. di ketahui haraga 6 buah jeruk rp tentukan harga 9 buah jeruk​ tolong bgt kak nomor 5 matematika vektor terima kasih 🙂 2 No. Date Jefri Nikol meminjam uang sejumlan Rp. dan bersedia lintuk melunastega dengan mencicil Rp. Sefiap bulan 10 hari jika. … Jefri mulai mencicil Pinjaman tersebut satu tahun Setelah la menerima uang. Berapakah bunga yang dikenakan otag Pinjaman tersebut? 3. Yantı meminjan sejumlah Rp dengan bunga 16% harus dilunasi pada akhir ahun ini. Jika Pelunasan chilakukan dengan menyefor long seliap bulan pada dan Pelunasan dengan tingkat 15% Berapakah besar Pengeluaran dalam 1 bulan?tolong butuh jawabannya cepat penjelasan dengan langkah langkah​ alpen = 59mentos = 32milk = 75toble = 15twister = 75berapa persen kemungkinan saya akan memilih toble saat mengeluarkan permen dari tas secara acak?​ = …… a. 65 b. 62 c. 64 d. 63​ = …… a. 53 b. 52 c. 51 d. 54​ Tentukan nilai fungsi lerasi Fx=2x+1 9. Perhatikan gambar, Tentukan luas jajar genjang tersebut! 10 cm ang 6 cm 18 cm ♫ 4 cm dan 9. Perhatikan gambar , Tentukan luas jajar genjang tersebu … t ! 10 cm ang 6 cm 18 cm ♫ 4 cm dan​ …… a. 52 b. 53 c. 54 d. 55​ 148 orang karyawan suatu perusahanya yang dipilih secara acak ditanya mengenai besarnya pengeluaran per hari untuk biaya hidup. Ternyata rata-rata pen … geluaran per bulan sebesar Rp. dengan simpangan baku yang diketaui sebesar Rp. α = 1%; α/2 = 0,5%; Zα/2 = 2,58 a. Hitunglah pendugaan interval rata-rata pengeluaran dengan tingkat keyakinan sebesar 95% b. Hitunglah pendugaan interval rata-rata pengeluaran dengan tingkat keyakinan sebesar 90%. di ketahui haraga 6 buah jeruk rp tentukan harga 9 buah jeruk​ tolong bgt kak nomor 5 matematika vektor terima kasih 🙂 2 No. Date Jefri Nikol meminjam uang sejumlan Rp. dan bersedia lintuk melunastega dengan mencicil Rp. Sefiap bulan 10 hari jika. … Jefri mulai mencicil Pinjaman tersebut satu tahun Setelah la menerima uang. Berapakah bunga yang dikenakan otag Pinjaman tersebut? 3. Yantı meminjan sejumlah Rp dengan bunga 16% harus dilunasi pada akhir ahun ini. Jika Pelunasan chilakukan dengan menyefor long seliap bulan pada dan Pelunasan dengan tingkat 15% Berapakah besar Pengeluaran dalam 1 bulan?tolong butuh jawabannya cepat penjelasan dengan langkah langkah​ Video yang berhubungan
BlogKoma - Pertidaksamaan Trigonometri merupakan pertidaksamaan yang memuat bentuk trigonometri seperti sin, cos, tan, sec, csc, dan cot. Yang namanya pertidaksamaan pasti akan memuat tanda ketaksamaan seperti >, ≥, ≤, dan < . Untuk memudahkan mempelajari materi pertidaksamaan trigonometri, kita harus menguasai dulu materi "penyelesaian

Darisoal di atas bisa kita simpulkan bahwa jenis soal di atas adalah contoh soal penjumlahan trigonometri. Sehingga kita dapat melihat rumus penjumlahan sin pada uraian di atas . Rumusnya yaitu 2sin ½ (A+B) cos ½ (A-B) Jawaban: nilai sin 105° + sin 15° = 2 sin ½ (105+15)°cos ½ (105-15)°. = 2 sin ½ (102)° cos ½ (90)°.

Dalammenyelesaikan persamaan kuadrat dapat dilakukan dengan tiga cara, yaitu pemfaktoran, membentuk kuadrat sempurna, dan rumus abc [4,h.83]. Apabila dalam menentukan akar-akar persamaan kuadrat tidak bisa dilakukan dengan pemfaktoran, maka siswa SMA akan di arahkan untuk menggunakan rumus abc
. 179 264 149 371 144 450 488 496

akar 3 cos x sin x akar 2